
Trajectory Planning of a Cable­Based Parallel Robot using
Reinforcement Learning and Soft Actor­Critic

DINH­SON VU, AHMAD ALSMADI
Mechanical Engineering Department

American University of the Middle East
Block 6, Building 1, Egaila, Kuwait

KUWAIT

Abstract: ­ Industry 4.0 introduces the use of modular stations and better communication between agents to im­
prove manufacturing efficiency and to lower the downtime between the customer and its final product. Among
novel mechanisms that have a high potential in this new industrial paradigm are cable­suspended parallel robot
(CSPR): their payload­to­mass ratio is high compared to their serial robot counterpart and their setup is quick
compared to other types of parallel robots such as Gantry system, popular in the automotive industry but difficult
to set up and to adapt while the production line changes. A CSPR can cover the workspace of a manufacturing
hall and providing assistance to operators before they arrive at their workstation. One challenge is to generate the
desired trajectories, so that the CSPR could move to the desired area. Reinforcement Learning (RL) is a branch
of Artificial Intelligence where the agent interacts with an environment to maximize a reward function. This
paper proposes the use of a RL algorithm called Soft Actor­Critic (SAC) to train a two degrees­of­freedom
(DOFs) CSPR to perform pick­and­place trajectory. Even though the pick­and­place trajectory based on artificial
intelligence has been an active research with serial robots, this technique has yet to be applied to

parallel robots.

Key­Words: ­ Robotics, Parallel Mechanism, Reinforcement Learning

Published: October 9, 2020.

Received : April 23, 2020. Revised: September 10, 2020. Accepted: September 25, 2020.

1 Introduction
Cable Suspended Parallel Robot (CSPR) is a spe­
cial type of parallel manipulators, in which cables are
used instead of rigid links and depend on gravity to
keep the cables in tension [1],[2]. CSPR has a larger
workspace, are lighter and are usually cheaper than
standard parallel mechanisms and thus have valuable
benefits in shipping port, factory application [3], and
space stations [4].

Despite their numerous benefits, CSPR are mech­
anisms where the cables can only pull the end­effector
and are more flexible than manipulators with rigid
links, which make them some sensitive to external
disturbances such as wind or vibration. Thus their
dynamics must be analysed carefully. Fahham et al.
[5] investigated the optimal trajectory time for a re­
dundant planar CSPR. They developed a hybrid ge­
netic algorithm and bang­bang control approach to
optimize the path that minimizes the traveling time
from the initial state to the final state. Gosselin et al.
[2] presented a two­DOFs CSPR. Their approach en­
sures that the cables are under tension for the whole
trajectory with the use of parametric Cartesian trajec­
tories in the dynamic constraints. Zi et al. [6] ad­
dressed the kinematics and graphical representation
of the singularity configuration for translational three­

DOFs CSPR, with the derivation of the inverse kine­
matics based on closed loop vector conditions and ge­
ometric methodology.

Because of the non­linearity of dynamic systems,
deriving the dynamic model may be tedious, espe­
cially if the mechanisms are based on several DOFs.
On the other hand, machine learning is a field of com­
puter science where an agent learns pattern and gen­
eralization from labeled training data. In particular,
deep learning and reinforcement learning have wide
application in several fields, including robotics. Ap­
plication such as facial recognition [7], detection of
energy streams [8], modelling of surface roughness
[9], and Brain MR Image Classification [10] uses
deep neural network that learn a model to classify fu­
ture data.

Reinforcement learning (RL) is a different
paradigm in machine learning, in which an agent is
trained with several interaction with its environment.
In RL, the agent does not need to have prior knowl­
edge of the mathematical model, and thus avoiding
the modeling and parameter tuning process that
relies on expert experience [11]. Many researchers
carried out experiments to investigate the integration
between reinforcement learning and robotics. In
[12], deep RL is applied on cable­driven suspended

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 165 Volume 15, 2020

robots to investigate the optimal tension distribution
in it. Their simulation results show that the learning
strategy was robust to certain model uncertainties.
A comparative study between end­to­end deep RL
and hybrid deep RL, that takes into account the
kinematics of the mechanism,has been performed
in [13]. In [14] they proposed a field application
of RL for solving the action selection problem of a
cable tracking task. To demonstrate its feasibility,
they conducted real­time experiments on an under­
water robot. Their results show good performance
relatively rapid convergence. This integration has
also been used in soft arm applications to realize
the position control task [15]. Hierarchical RL for
Semi­Autonomous Rescue Robots [16] has been
applied to explore disaster scenes and find victims.
Results showed that with the proposed Hierarchical
RL, the robot could explore and react to the victim
scene accurately. This paper proposed the use of
RL to control a two­DOFs CSPR with RL algorithm
called Soft Actor­Critic (SAC) [17]. Even though the
RL has been used in several robotic applications, this
paper provides the steps used in the modeling of such
RL problem, from the modelling of the environment,
the description of the agent, and the learning process
of the agent to perform pick­and­place trajectories.

This paper is structured as followed: the dynamic
model of the system and the policy gradient algorithm
is presented in section II. The parameters of the sim­
ulation performed to assess the pick­and­place trajec­
tory are described as well. Section III presents the
results obtained for the Pick­and­Place trajectory and
compares different reward function to achieve the de­
sired goal. The discussion in section IV comments on
the results and the conclusion introduces the future
works.

2 Materials and Methods
This section presents the reinforcement learning prob­
lem, which consists of the agent, the environment, and
its reward function. It also presents the parameters
used, so that the agent learns to perform pick­and­
place motion from interaction with the environment.

The environment corresponds to the forward dy­
namics of the mechanical system, which is a two­
DOFs point­mass CSPR. The agent is based on a
policy gradient algorithm, called Soft Actor­Critic
(SAC), and its aim is to find the cable tension to move
the end­effector to the desired position with the re­
quired velocity and acceleration. The reward function
informs the agent about its performance while inter­
acting with the environment. Different reward func­
tions are presented and compared in the simulation
section.

2.1 Dynamics of the CSPR
An agent learns to perform pick­and­place trajecto­
ries with reinforcement learning by interacting sev­
eral times with its environment and by maximizing a
reward function. In this paper, the agent is acting on
the cable tensions t1 and t2 of the two­DOFs cable
mechanism. The environment corresponds to the for­
ward dynamics of the two­DOFS CSPR, which con­
sists in the calculation of the Cartesian position, ve­
locity, and acceleration of the end­effector, namely
p, ṗ, and p̈ of the point massm given the cable tension
t1 and t2. Even though a two­DOFsmechanism is rel­
atively simple, the development of larger scale robot
with high DOFs can be performed from the work of
this paper.

a1 a2
y

x

m p

e1 e2

l2l1

Figure 1: Two­DOFs point­mass CSPR.

The fixed attachment points ai correspond to the posi­
tion of the motors that are reeling the end­effector up
and down, which position is given by p = [x y]

T ,
as shown in figure 1. The cable lengths l1 and l2 are
the distance between the end­effector’s position p and
their respective attachment point a1 and a2. The in­
verse kinematics, which calculates the cable length
given the Cartesian position of the end­effector, is
given as:

li =

√
(p− ai)T (p− ai) with: i = 1, 2. (1)

The unit vectors e1 and e2 are the direction of the
tension force acting on the point mass end­effector,
which expression is given as:

ei =
ai − p
li

. (2)

The dynamics of the point mass end­effector can be
obtained by applying Newton’s second law, namely

t1e1 + t2e2 +mg = mp̈ (3)

where g = [g 0]
T , and g corresponds to the gravi­

tational acceleration. One may obtained the forward
dynamics by rearranging (3) to determine the accel­
eration of the end­effector given the cable tension,

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 166 Volume 15, 2020

namely:

p̈ =
1

m
Mt+ g (4)

with:

M = [e1 e2] , and t = [t1 t2]
T
. (5)

This derivation is similar to the one performed in [1].
The matrixM is the Jacobian matrix of the manipula­
tor and is singular when one of the unit vector e1 or e2
is zero or when both unit vectors are aligned, which
occurs when the end­effector is positioned between
the two attachment points a1 and a2. In this paper, we
will consider trajectories below the singularity lines.
Dynamic trajectories outside the static workspace is
an active field of research: the tension of the cable
are kept under tension with the use of the inertial force
generated by the mass of the end­effector, but the gen­
eration of such dynamic trajectories is challenging
[18], [19]. Equation (4) corresponds to the forward
dynamics of the two­DOFs CSPR and can be written
in a discrete way as:

p̈k = f(tk,pk, ṗk), (6)

where k represents the current time step. The velocity
and the position of the end­effector can be obtained
with Euler’s numerical integration, namely:

ṗk+1 = ṗk + p̈k∆t, (7)

pk+1 = pk + ṗk∆t+
1

2
p̈k∆t2 (8)

where ∆t represents the time step between two es­
timates of the Cartesian position. Euler’s algorithm
uses successive integration of the acceleration based
on Taylor series and suffers from potential numerical
divergence, especially if a simulation is run for a long
period of time and if the time step ∆t is relatively
large.

Better integration calculation algorithm, such as
Runge­Kutta, can be used to obtain the position and
velocity from the Cartesian acceleration. For in­
stance, Runge­Kutta algorithm of order 4 (RK4) is
based on the weighted average of four acceleration es­
timation, but requires to run the forward dynamics and
Euler integration—equations (6), (7), and (8)—four
times each, whichmay be computationally expensive.
The forward dynamics of the two­DOFs CSPR is not
computationally expensive, so RK4 method is likely
to be more accurate than the Euler’s method for a
given time step ∆t, with little additional computa­
tional cost. However, more complicated mechanisms,
such as six­DOFs serial robots, require the calculation
of the inverse dynamics several times (seven times of
a six­DOFs serial robot) to determine the dynamics

components of the manipulator, and then to obtain
an expression of the forward dynamics. This would
greatly increase the computational cost of using RK4
for numerical integration. The use of a smaller time
step ∆t prevents the Euler’s method from diverging,
but also increase the number of interaction between
the agent and the environment. A comparison be­
tween Euler’s method and RK4 is provided in the dis­
cussion of this paper to assess the effect on the be­
haviour of the agent in terms of average reward.

2.2 Soft Actor­Critic Algorithm
The preceding subsection has presented the behaviour
of the environment. This subsection describes the be­
haviour of the agent: given the observation and the
reward from the environment, what should be the ac­
tion of the agent. The observation is represented by
the position, velocity, and acceleration p, ṗ, p̈ of the
end­effector calculated with the forward dynamics,
and the action corresponds to the cable tension t. The
actor can be seen as an operator pulling the cable to
position the point­mass correctly.

Environment

Agent

Forward Dynamics

Soft Actor Critic (SAC)
t1, t2

p̈, ṗ,p Action at
State st

Reward rt

Figure 2: Reinforcement Learning Diagram. The
agent outputs the cable tension, and the environment
outputs the next state, namely position, velocity, and
acceleration of the effector.

There are mainly two families of algorithms in re­
inforcement learning. One is based on the estimation
of a state value V or state­action value Q that evalu­
ates the quality of a state depending on the reward re­
ceived. In the case of Pick­and­Place, being far from
the target position would result in a low evaluation of
this state, but being closer would lead to a higher state
value. Deep Q­Learning [20] is an example of value­
based RL agent that uses a neural network to estimate
a value function, then a greedy policy would take the
action that yields the highest reward.

The other family in RL agent is called policy gradi­
ent, which directly updates a parametric policy based
on the reward received. The use of a value function
is not mandatory, but is useful to guide the param­
eters of the policy to the optimization of the reward
received during an episode. The term ”Actor­Critic”
describes the relationship between the policy (Actor),
which decides the action to take, and the value func­
tion (Critic), which evaluate the action taken.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 167 Volume 15, 2020

The algorithm used in this paper is based on a pol­
icy gradient method called Soft Actor­Critic (SAC)
[17], [21]. The ”Soft” of the SAC algorithm is a
stochastic behaviour which converges to the maxi­
mization of the reward function while exploring the
action space with the introduction of an entropy reg­
ularization in the cost function. This algorithm is
well suited for problem with continuous action space.
DDPG algorithm [22], [23] and TD3 [24] are other al­
gorithms that function with continuous action space,
but SAC uses interesting techniques, such as clipped
double­Q learning that prevent overestimating the ac­
tion value, and the entropy regularization, which is an
elegant method to adjust the balance between explo­
ration and exploitation compared to the added Gaus­
sian noise used in DDPG and TD3. The key equations
to understand SAC algorithm are now given, but the
implementation details, such as the experience replay,
the clipped double­Q learning, and the target policy,
can be found in the original paper [17].

The action t̃θ, which corresponds to a normalized
tension cable between [−1, 1], is selected from a pol­
icy πθ, which is a squashed Gaussian distribution,
namely:

t̃θ ∼ πθ = tanh (X ∼ N (µθ(s), σθ(s))) (9)

where µθ(s) and σθ(s), respectively the mean and the
standard deviation of the normal distribution N , are
the outputs of the actor neural network defined with
the parameter θ. Using normalized tension has a ten­
dency to reduce the variance of the cable tension. The
conversion between normalized cable tension and ca­
ble tension used in the environment is performed as
followed:

t = tmax
(̃
tθ + 1

)
, (10)

where tmax is the maximum cable tension allowed.
The modification of µθ(s) and σθ(s) aims at maxi­
mizing the cost function Jπ and the standard update
rule using gradient ascent is given as:

θk+1 = θk + αlr∇θJπ (11)

where αlr is the learning rate, the indices k and k+1
correspond to the current and next values of the pa­
rameters θ of the neural network, and∇θJπ is the gra­
dient of the cost function Jπ to be maximized, namely
the rewards obtained at each time step of an episode
of length τ . The policy aims at maximizing the action
value Qπ(s, a), and the standard cost function Jπ of
a RL problem can be expressed as follows:

Jπ = E
τ∼π

[R(τ)|s, a] = Qπ(s, a), (12)

where E[.] means the expected value, the underscript
τ ∼ π means following the policy π during the

episode of length τ , (R(τ)|s, a) is the reward received
at the end of the episode of length τ after following
a sequence of state and action s, a. The novelty of
the SAC algorithm is the introduction of a bonus re­
ward proportional to the entropy of the policy, which
has a tendency to increase the exploration and prevent
early convergence to a local optimum. The SAC cost
function is given as:

Jπ = Qπ(s, a)− α logπ (a|s) (13)
with α, a hyperparameter that adjust the level of en­
tropy bonus. The term ”− logπ (a|s)”, including the
minus sign, corresponds to the entropy term, which is
a measure of the ”uncertainty” of the policy. A fully
deterministic policy has low entropy, whereas a ran­
dom policy has high entropy. The policy is encour­
aged to explore neighbouring action­state thanks to
the entropy bonus. Usually, the term α is decreased
with as the learning step increases, since the policy
has learnt which actions lead the end­effector to the
target position.

The value function Qπ(s, a) of (13) is estimated
with two ”Critic” neural network, whose parameters
are updated by minimizing the mean square Bellman
error (MSBE). The MSBE is a measure of the neu­
ral networks output to respect the Bellman equation,
which evaluates a state­action value from its succes­
sor, namely:

Qπ(s, a) = E[r(s, a) + γE[Qπ(s
′, a′)]], (14)

where γ is the discount factor, reflecting that short­
term reward has more weight that long­term reward,
and s′, a′ are the successor state and action. The
use of two critic networks is the basis of the clipped
double­Q that reduces the overestimation of the value
function by selecting the minimum output of the two
Q­networks. After obtaining Jpi with interaction
with the environment, automatic differentiation tools
available with TensorFlow and PyTorch can calculate
one step for the gradient ascent. The SAC algorithm
used in this paper is based on the stable­baselines
GitHub repository [25], which is based on Tensor­
Flow.

2.3 The reward function
The preceding subsection have described the environ­
ment (forward dynamics) and the agent (SAC). The
reward obtained by the agent at each time step, is now
described.

For pick­and­place trajectories, the reward func­
tion can intuitively be expressed as the minimization
of the error ε between the position of the end­effector
p and the position of the desired position pd, namely:

r1 = −K1ε with ε =

√
(pd − p)T (pd − p),

(15)

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 168 Volume 15, 2020

with the negative sign to penalize the distance be­
tween the desired state and the current state of the end­
effector, and with a factor K1 to adjust the reward.
Another potential reward function uses the square er­
ror instead of the error, namely:

r2 = −K2ε
2. (16)

The reward function based on r1 and r2 may penalize
the actor while exploring far from the desired posi­
tion. Increasing the regulating factorK1 andK2 may
improve the behaviour close to the desired position,
but could result in an unstable behaviour of the agent
while far from the desired position.

Another solution would use an inverse function
to promote the agent to get closer to the target [26],
namely:

r3 =
K3

1 +K4ε
(17)

with K3 and K4 begin two parameters to adjust this
new reward function. Figure 3 shows the three pro­
posed reward function, namely based on the error,
the square error, and the inverse of the error, named
r1, r2, and r3 respectively.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x (m)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

re
w

ar
d

r1 = !K1"
r2 = !K2"

2

r3 = K3

1+K4"

Figure 3: Reward function r1, r2, and r3. The reward
function r3 has been shifted down for visual compar­
ison.

Reward shaping in pick­and­place motion is
clearly defined with the position error ε. For more
abstract tasks, such as winning a game of table ten­
nis, intermediate rewards may be designed to facili­
tate the end­goal, but the agent may be stuck in a lo­
cal optima and favor local short­term reward instead
of long­termwinning return. This problem called ”re­
ward shaping” can be assessed with sparse reward,
where the agent is given a reward only on completion
of the task, and with Hindsight Experience Replay
(HER) [27]–[29], where the agent still learns from an
episode, even if it ended with a goal different from
the desired objective. This promising concept will be
investigated in future research.

Parameter Value
Learning rate αlr 10−4

Total training step 200k
Episode length 4000
Batch size 256

Actor neural network [256, 256]
Environment time step ∆t 0.005 sec
Attachment point position a1 = [0,−0.3]T

a2 = [0, 0.3]T

End­effector mass m = 0.5kg
Maximal cable tension tmax = 10N

Table 1: Parameter for the pick­and­place task

2.4 Simulation parameters
For pick­and­place trajectories, it is assumed that the
velocity and the acceleration of the end­effector at the
desired position is zero. Table 1 summarizes the main
parameters used to launch the simulation. The simu­
lation runs on a CPU 2.3 GHz Quad­Core i5. One
training session of 200k step takes approximately 1
hour. The initial position and the final position of the
end­effector are chosen randomly in the workspace
of the mechanism, below the attachment point a1 and
a2, between the range [0, 1] in the x direction and
[−0.3, 0.3] in the y direction. Notice that from fig­
ure 1, the x­direction is vertical and directed down­
ward.

3 Results
The aim of the simulation is to compare the effect
of different reward functions on the behavior of the
agent. There are three environments, corresponding
to the reward function r1, r2, and r3. The agent is
trained three times on each environment with differ­
ent initial random seed, since the parameter initial­
ization of the neural network has an influence on the
agent’s learning.

Figure 4 shows the average reward obtained dur­
ing the learning phase of the agent. The average re­
ward and the standard deviation of the three run are
shown as a solid line and shaded area respectively.
The convergence of the agent with the environment
using the reward function r1 takes about 150k, and the
environment with the reward r2 takes approximately
50k steps, if the drop in performance is ignored. But
then, during the training with these two environments,
the average reward drops drastically, which is due to
the exploration of the agent. The agent is deeply pe­
nalized for exploring wrong action space. The agent
interacting with the environment that outputs the re­
ward r3 has much less variance in terms of average
reward, but after the end of the training period, it ap­
pears that additional training steps could lead to better
convergence.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 169 Volume 15, 2020

0 50 100 150 200
Step (x 1e3)

-20

-15

-10

-5

0

5

A
ve

ra
ge

 R
ew

ar
d

#104

r1 = !K1"

(a) Reward function r1

0 50 100 150 200
Step (x 1e3)

-8

-6

-4

-2

0

A
ve

ra
ge

 R
ew

ar
d

#105

r2 = !K2"
2

(b) Reward function r2

0 50 100 150 200
Step (x 1e3)

-1

0

1

2

3

4

A
ve

ra
ge

 R
ew

ar
d

#104

r3 = K3

1+K4"

(c) Reward function r3

Figure 4: Average reward during the training with 200k step.

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r1 = !K1"

(a) Reward function r1

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r2 = !K2"
2

(b) Reward function r2

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r3 = K3

1+K4"

(c) Reward function r3

Figure 5: Average error obtained with the trained model.

Figure 5 shows the average error obtained while
using the trained agent for the three environment.
During the first 200 steps, the error is high, which
is expected since the agent is still at the initial po­
sition. Then the error converges toward zero for all
trained agents. The environment with the reward r2
has high variance and relatively poor convergence to­
ward zero error. The environment with the reward r1
and r3 have better convergence and lower variance,
even though the reward function r1 has a slight edge
in terms of convergence speed.

4 Discussion
In the simulation shown in figure 4, the agent pulls
and releases the cables to position the end­effector
that would maximize the reward during an episode.
The standard strategy used in RL is to randomly try
different cable tension until converging to a satisfac­
tory position close to the desired one, which is an in­
efficient strategy that requires a lot of interaction be­
tween the agent and the environment. The inverted
pendulum problem—one popular problem in the Ope­
nAI gym (https://gym.openai.com/), with one
continuous action space and three observation space,
takes approximately 50k learning steps to converge to
an optimal solution. When the dynamics of the mech­
anism is known, one way to improve the convergence
speed and to help the learning phase of the agent is
to use the inverse dynamics to calculate the required
cable tension from the desired position, which gives
a basis on the action to take for the agent instead of
randomly guessing which action would maximize the

cost function [30].
The number of learning step n depends on the step

time∆t used in the simulation of the environment and
the time duration of an episode τ , with the relationship
given as:

n =
τ

∆t
(18)

The number of step can be reduced when the dura­
tion τ is reduced or if the step time ∆t is increased.
On a physical robot, it is often desired to have a fixed
episode length. Increasing the step time∆t may lead
into an unstable behaviour, especially using Euler’s
method to integrate the acceleration and to calculate
velocity and position. Figure 6 shows the compar­
ison between Euler’s method and RK4 method for
100k training steps and ∆t = 0.01 sec, with the re­
ward function r3, averaged on three runs with three
different seeds. It can be noticed that the average
reward obtained with RK4 is higher than with Eu­
ler’s method: the reason is that Euler’s approxima­
tion on the velocity and the position degrades as ∆t
gets larger. Moreover because the time step is rela­
tively large, the position accuracy of the end­effector
is worsen, which prevent the agent to converge to the
desired position.

5 Conclusion
This paper presents an implementation of reinforce­
ment learning for positioning a two­DOFs CSPR for
point­to­point trajectories. The derivation of the dy­
namics of the mechanical system has been derived

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 170 Volume 15, 2020

https://gym.openai.com/

0 20 40 60 80 100
Step (x 1e3)

0

0.5

1

1.5

2

A
ve

ra
ge

 R
ew

ar
d

#104

Euler method
RK4 method

Figure 6: Comparison between Euler method and
RK4.

and the reinforcement learning algorithm, namely
Soft Actor­Critic, has been described. The result
shows a comparison between different reward func­
tion provided by the environment and indicates that
reward shaping has an influence on the behaviour
of the trained agent. A comparison between Euler
method and RK4 has been presented and highlight
benefits of using more precise in terms of learning
steps. Future research will focus on the integration
of such RL technique on physical CSPR and compar­
ison with classical control theory.

References:
[1] C. Gosselin and S. Foucault, “Dynamic point­

to­point trajectory planning of a two­dof cable­
suspended parallel robot,” IEEE Transactions
on Robotics, vol. 30, no. 3, pp. 728–736, 2014.

[2] C. Gosselin, P. Ren, and S. Foucault, “Dy­
namic trajectory planning of a two­dof cable­
suspended parallel robot,” in 2012 IEEE Inter­
national conference on Robotics and Automa­
tion, IEEE, 2012, pp. 1476–1481.

[3] R. Bostelman, J. Albus, N. Dagalakis, A. Ja­
coff, and J. Gross, “Applications of the nist
robocrane,” in Proceedings of the 5th Interna­
tional Symposium on Robotics and Manufac­
turing, vol. 5, 1994.

[4] P. D. Campbell, P. L. Swaim, and C. J. Thomp­
son, “Charlotte™ robot technology for space
and terrestrial applications,” SAE transactions,
pp. 641–648, 1995.

[5] H. R. Fahham, M. Farid, and M. Khooran,
“Time optimal trajectory tracking of redun­
dant planar cable­suspended robots consid­
ering both tension and velocity constraints,”
Journal of dynamic systems, measurement, and
control, vol. 133, no. 1, 2011.

[6] B. Zi, X. Wu, J. Lin, and Z. Zhu, “Inverse
kinematics and singularity analysis for a 3­dof
hybrid­driven cable­suspended parallel robot,”
International journal of advanced robotic sys­
tems, vol. 9, no. 4, p. 133, 2012.

[7] J.­T. Liu, F.­Y. Wu, W.­J. Lu, and B.­L. Zhang,
“Domain adaption for facial expression recog­
nition,” in 2019 International Conference on
Machine Learning and Cybernetics (ICMLC),
IEEE, 2019, pp. 1–6.

[8] J. D. Deng, “Online outlier detection of en­
ergy data streams using incremental and kernel
pca algorithms,” in 2016 IEEE 16th Interna­
tional Conference on Data Mining Workshops
(ICDMW), IEEE, 2016, pp. 390–397.

[9] F. Djavanroodi, “Artificial neural network
modeling of surface roughness in magnetic
abrasive finishing process,” Applied Sciences,
Engineering and Technology, vol. 6, no. 11,
pp. 1976–1983, 2013.

[10] G. Latif, J. Alghazo, L. Alzubaidi, M. M.
Naseer, and Y. Alghazo, “Deep convolutional
neural network for recognition of unifiedmulti­
language handwritten numerals,” in 2018 IEEE
2nd International Workshop on Arabic and De­
rived Script Analysis and Recognition (ASAR),
IEEE, 2018, pp. 90–95.

[11] A. S. Polydoros and L. Nalpantidis, “Survey
of model­based reinforcement learning: Appli­
cations on robotics,” Journal of Intelligent &
Robotic Systems, vol. 86, no. 2, pp. 153–173,
2017.

[12] T. Ma, H. Xiong, L. Zhang, and X. Diao,
“Control of a cable­driven parallel robot via
deep reinforcement learning,” in 2019 IEEE In­
ternational Conference on Advanced Robotics
and its Social Impacts (ARSO), IEEE, 2019,
pp. 275–280.

[13] H. Xiong, T. Ma, L. Zhang, and X. Diao,
“Comparison of end­to­end and hybrid deep re­
inforcement learning strategies for controlling
cable­driven parallel robots,”Neurocomputing,
vol. 377, pp. 73–84, 2020.

[14] A. El­Fakdi and M. Carreras, “Policy gra­
dient based reinforcement learning for real
autonomous underwater cable tracking,” in
2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2008,
pp. 3635–3640.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 171 Volume 15, 2020

[15] Q. Wu, Y. Gu, Y. Li, B. Zhang, S. A. Chep­
inskiy, J. Wang, A. A. Zhilenkov, A. Y. Kras­
nov, and S. Chernyi, “Position control of cable­
driven robotic soft arm based on deep re­
inforcement learning,” Information, vol. 11,
no. 6, p. 310, 2020.

[16] B. Doroodgar and G. Nejat, “A hierarchical
reinforcement learning based control architec­
ture for semi­autonomous rescue robots in clut­
tered environments,” in 2010 IEEE Interna­
tional Conference on Automation Science and
Engineering, IEEE, 2010, pp. 948–953.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S.
Levine, “Soft actor­critic: Off­policy maxi­
mum entropy deep reinforcement learning with
a stochastic actor,” J. Dy and A. Krause, Eds.,
ser. Proceedings of Machine Learning Re­
search, vol. 80, Stockholmsmässan, Stockholm
Sweden: PMLR, Oct. 2018, pp. 1861–1870.

[18] X. Jiang and C. Gosselin, “Dynamic point­to­
point trajectory planning of a three­dof cable­
suspended parallel robot,” IEEE Transactions
on Robotics, vol. 32, no. 6, pp. 1550–1557,
2016.

[19] X. Jiang, E. Barnett, and C. Gosselin, “Pe­
riodic trajectory planning beyond the static
workspace for 6­dof cable­suspended paral­
lel robots,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1128–1140, 2018.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, Playing atari with deep reinforce­
ment learning, 2013.

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G.
Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, and S. Levine, Soft actor­
critic algorithms and applications, 2018.

[22] D. Silver, G. Lever, N. Heess, T. Degris, D.
Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” 2014.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wier­
stra, Continuous control with deep reinforce­
ment learning, 2015.

[24] S. Fujimoto, H. van Hoof, and D. Meger, Ad­
dressing function approximation error in actor­
critic methods, 2018.

[25] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A.
Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Rad­
ford, J. Schulman, S. Sidor, and Y. Wu, Sta­
ble baselines, https://github.com/hill-
a/stable-baselines, 2018.

[26] L. Butyrev, T. Edelhäußer, and C. Mutschler,
Deep reinforcement learning for motion plan­
ning of mobile robots, 2019.

[27] M. Andrychowicz, F. Wolski, A. Ray, J.
Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba, Hind­
sight experience replay, 2017.

[28] M. Plappert, M. Andrychowicz, A. Ray, B.Mc­
Grew, B. Baker, G. Powell, J. Schneider, J. To­
bin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, Multi­goal reinforcement learn­
ing: Challenging robotics environments and re­
quest for research, 2018.

[29] M. Kim, D.­K. Han, J. Park, and J.­S. Kim,
“Motion planning of robot manipulators for a
smoother path using a twin delayed deep deter­
ministic policy gradient with hindsight experi­
ence replay,” Applied Sciences, vol. 10, p. 575,
2020.

[30] J. K. Gupta, K. Menda, Z. Manchester, and
M. J. Kochenderfer, “A general framework for
structured learning of mechanical systems,”

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Dinh­son Vu conducted the research and investiga­
tion process. He also carried out the simulation of this
work. Ahmad Alsmadi did the preparation, creation
and presentation of the published work.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 172 Volume 15, 2020

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Materials and Methods
	Dynamics of the CSPR
	Soft Actor-Critic Algorithm
	The reward function
	Simulation parameters

	Results
	Discussion
	Conclusion

