
Trajectory Planning of a CableBased Parallel Robot using
Reinforcement Learning and Soft ActorCritic

DINHSON VU, AHMAD ALSMADI
Mechanical Engineering Department

American University of the Middle East
Block 6, Building 1, Egaila, Kuwait

KUWAIT

Abstract: Industry 4.0 introduces the use of modular stations and better communication between agents to im
prove manufacturing efficiency and to lower the downtime between the customer and its final product. Among
novel mechanisms that have a high potential in this new industrial paradigm are cablesuspended parallel robot
(CSPR): their payloadtomass ratio is high compared to their serial robot counterpart and their setup is quick
compared to other types of parallel robots such as Gantry system, popular in the automotive industry but difficult
to set up and to adapt while the production line changes. A CSPR can cover the workspace of a manufacturing
hall and providing assistance to operators before they arrive at their workstation. One challenge is to generate the
desired trajectories, so that the CSPR could move to the desired area. Reinforcement Learning (RL) is a branch
of Artificial Intelligence where the agent interacts with an environment to maximize a reward function. This
paper proposes the use of a RL algorithm called Soft ActorCritic (SAC) to train a two degreesoffreedom
(DOFs) CSPR to perform pickandplace trajectory. Even though the pickandplace trajectory based on artificial
intelligence has been an active research with serial robots, this technique has yet to be applied to

parallel robots.

KeyWords: Robotics, Parallel Mechanism, Reinforcement Learning

Published: October 9, 2020.

Received : April 23, 2020. Revised: September 10, 2020. Accepted: September 25, 2020.

1 Introduction
Cable Suspended Parallel Robot (CSPR) is a spe
cial type of parallel manipulators, in which cables are
used instead of rigid links and depend on gravity to
keep the cables in tension [1],[2]. CSPR has a larger
workspace, are lighter and are usually cheaper than
standard parallel mechanisms and thus have valuable
benefits in shipping port, factory application [3], and
space stations [4].

Despite their numerous benefits, CSPR are mech
anisms where the cables can only pull the endeffector
and are more flexible than manipulators with rigid
links, which make them some sensitive to external
disturbances such as wind or vibration. Thus their
dynamics must be analysed carefully. Fahham et al.
[5] investigated the optimal trajectory time for a re
dundant planar CSPR. They developed a hybrid ge
netic algorithm and bangbang control approach to
optimize the path that minimizes the traveling time
from the initial state to the final state. Gosselin et al.
[2] presented a twoDOFs CSPR. Their approach en
sures that the cables are under tension for the whole
trajectory with the use of parametric Cartesian trajec
tories in the dynamic constraints. Zi et al. [6] ad
dressed the kinematics and graphical representation
of the singularity configuration for translational three

DOFs CSPR, with the derivation of the inverse kine
matics based on closed loop vector conditions and ge
ometric methodology.

Because of the nonlinearity of dynamic systems,
deriving the dynamic model may be tedious, espe
cially if the mechanisms are based on several DOFs.
On the other hand, machine learning is a field of com
puter science where an agent learns pattern and gen
eralization from labeled training data. In particular,
deep learning and reinforcement learning have wide
application in several fields, including robotics. Ap
plication such as facial recognition [7], detection of
energy streams [8], modelling of surface roughness
[9], and Brain MR Image Classification [10] uses
deep neural network that learn a model to classify fu
ture data.

Reinforcement learning (RL) is a different
paradigm in machine learning, in which an agent is
trained with several interaction with its environment.
In RL, the agent does not need to have prior knowl
edge of the mathematical model, and thus avoiding
the modeling and parameter tuning process that
relies on expert experience [11]. Many researchers
carried out experiments to investigate the integration
between reinforcement learning and robotics. In
[12], deep RL is applied on cabledriven suspended

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 165 Volume 15, 2020

robots to investigate the optimal tension distribution
in it. Their simulation results show that the learning
strategy was robust to certain model uncertainties.
A comparative study between endtoend deep RL
and hybrid deep RL, that takes into account the
kinematics of the mechanism,has been performed
in [13]. In [14] they proposed a field application
of RL for solving the action selection problem of a
cable tracking task. To demonstrate its feasibility,
they conducted realtime experiments on an under
water robot. Their results show good performance
relatively rapid convergence. This integration has
also been used in soft arm applications to realize
the position control task [15]. Hierarchical RL for
SemiAutonomous Rescue Robots [16] has been
applied to explore disaster scenes and find victims.
Results showed that with the proposed Hierarchical
RL, the robot could explore and react to the victim
scene accurately. This paper proposed the use of
RL to control a twoDOFs CSPR with RL algorithm
called Soft ActorCritic (SAC) [17]. Even though the
RL has been used in several robotic applications, this
paper provides the steps used in the modeling of such
RL problem, from the modelling of the environment,
the description of the agent, and the learning process
of the agent to perform pickandplace trajectories.

This paper is structured as followed: the dynamic
model of the system and the policy gradient algorithm
is presented in section II. The parameters of the sim
ulation performed to assess the pickandplace trajec
tory are described as well. Section III presents the
results obtained for the PickandPlace trajectory and
compares different reward function to achieve the de
sired goal. The discussion in section IV comments on
the results and the conclusion introduces the future
works.

2 Materials and Methods
This section presents the reinforcement learning prob
lem, which consists of the agent, the environment, and
its reward function. It also presents the parameters
used, so that the agent learns to perform pickand
place motion from interaction with the environment.

The environment corresponds to the forward dy
namics of the mechanical system, which is a two
DOFs pointmass CSPR. The agent is based on a
policy gradient algorithm, called Soft ActorCritic
(SAC), and its aim is to find the cable tension to move
the endeffector to the desired position with the re
quired velocity and acceleration. The reward function
informs the agent about its performance while inter
acting with the environment. Different reward func
tions are presented and compared in the simulation
section.

2.1 Dynamics of the CSPR
An agent learns to perform pickandplace trajecto
ries with reinforcement learning by interacting sev
eral times with its environment and by maximizing a
reward function. In this paper, the agent is acting on
the cable tensions t1 and t2 of the twoDOFs cable
mechanism. The environment corresponds to the for
ward dynamics of the twoDOFS CSPR, which con
sists in the calculation of the Cartesian position, ve
locity, and acceleration of the endeffector, namely
p, ṗ, and p̈ of the point massm given the cable tension
t1 and t2. Even though a twoDOFsmechanism is rel
atively simple, the development of larger scale robot
with high DOFs can be performed from the work of
this paper.

a1 a2
y

x

m p

e1 e2

l2l1

Figure 1: TwoDOFs pointmass CSPR.

The fixed attachment points ai correspond to the posi
tion of the motors that are reeling the endeffector up
and down, which position is given by p = [x y]

T ,
as shown in figure 1. The cable lengths l1 and l2 are
the distance between the endeffector’s position p and
their respective attachment point a1 and a2. The in
verse kinematics, which calculates the cable length
given the Cartesian position of the endeffector, is
given as:

li =

√
(p− ai)T (p− ai) with: i = 1, 2. (1)

The unit vectors e1 and e2 are the direction of the
tension force acting on the point mass endeffector,
which expression is given as:

ei =
ai − p
li

. (2)

The dynamics of the point mass endeffector can be
obtained by applying Newton’s second law, namely

t1e1 + t2e2 +mg = mp̈ (3)

where g = [g 0]
T , and g corresponds to the gravi

tational acceleration. One may obtained the forward
dynamics by rearranging (3) to determine the accel
eration of the endeffector given the cable tension,

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 166 Volume 15, 2020

namely:

p̈ =
1

m
Mt+ g (4)

with:

M = [e1 e2] , and t = [t1 t2]
T
. (5)

This derivation is similar to the one performed in [1].
The matrixM is the Jacobian matrix of the manipula
tor and is singular when one of the unit vector e1 or e2
is zero or when both unit vectors are aligned, which
occurs when the endeffector is positioned between
the two attachment points a1 and a2. In this paper, we
will consider trajectories below the singularity lines.
Dynamic trajectories outside the static workspace is
an active field of research: the tension of the cable
are kept under tension with the use of the inertial force
generated by the mass of the endeffector, but the gen
eration of such dynamic trajectories is challenging
[18], [19]. Equation (4) corresponds to the forward
dynamics of the twoDOFs CSPR and can be written
in a discrete way as:

p̈k = f(tk,pk, ṗk), (6)

where k represents the current time step. The velocity
and the position of the endeffector can be obtained
with Euler’s numerical integration, namely:

ṗk+1 = ṗk + p̈k∆t, (7)

pk+1 = pk + ṗk∆t+
1

2
p̈k∆t2 (8)

where ∆t represents the time step between two es
timates of the Cartesian position. Euler’s algorithm
uses successive integration of the acceleration based
on Taylor series and suffers from potential numerical
divergence, especially if a simulation is run for a long
period of time and if the time step ∆t is relatively
large.

Better integration calculation algorithm, such as
RungeKutta, can be used to obtain the position and
velocity from the Cartesian acceleration. For in
stance, RungeKutta algorithm of order 4 (RK4) is
based on the weighted average of four acceleration es
timation, but requires to run the forward dynamics and
Euler integration—equations (6), (7), and (8)—four
times each, whichmay be computationally expensive.
The forward dynamics of the twoDOFs CSPR is not
computationally expensive, so RK4 method is likely
to be more accurate than the Euler’s method for a
given time step ∆t, with little additional computa
tional cost. However, more complicated mechanisms,
such as sixDOFs serial robots, require the calculation
of the inverse dynamics several times (seven times of
a sixDOFs serial robot) to determine the dynamics

components of the manipulator, and then to obtain
an expression of the forward dynamics. This would
greatly increase the computational cost of using RK4
for numerical integration. The use of a smaller time
step ∆t prevents the Euler’s method from diverging,
but also increase the number of interaction between
the agent and the environment. A comparison be
tween Euler’s method and RK4 is provided in the dis
cussion of this paper to assess the effect on the be
haviour of the agent in terms of average reward.

2.2 Soft ActorCritic Algorithm
The preceding subsection has presented the behaviour
of the environment. This subsection describes the be
haviour of the agent: given the observation and the
reward from the environment, what should be the ac
tion of the agent. The observation is represented by
the position, velocity, and acceleration p, ṗ, p̈ of the
endeffector calculated with the forward dynamics,
and the action corresponds to the cable tension t. The
actor can be seen as an operator pulling the cable to
position the pointmass correctly.

Environment

Agent

Forward Dynamics

Soft Actor Critic (SAC)
t1, t2

p̈, ṗ,p Action at
State st

Reward rt

Figure 2: Reinforcement Learning Diagram. The
agent outputs the cable tension, and the environment
outputs the next state, namely position, velocity, and
acceleration of the effector.

There are mainly two families of algorithms in re
inforcement learning. One is based on the estimation
of a state value V or stateaction value Q that evalu
ates the quality of a state depending on the reward re
ceived. In the case of PickandPlace, being far from
the target position would result in a low evaluation of
this state, but being closer would lead to a higher state
value. Deep QLearning [20] is an example of value
based RL agent that uses a neural network to estimate
a value function, then a greedy policy would take the
action that yields the highest reward.

The other family in RL agent is called policy gradi
ent, which directly updates a parametric policy based
on the reward received. The use of a value function
is not mandatory, but is useful to guide the param
eters of the policy to the optimization of the reward
received during an episode. The term ”ActorCritic”
describes the relationship between the policy (Actor),
which decides the action to take, and the value func
tion (Critic), which evaluate the action taken.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 167 Volume 15, 2020

The algorithm used in this paper is based on a pol
icy gradient method called Soft ActorCritic (SAC)
[17], [21]. The ”Soft” of the SAC algorithm is a
stochastic behaviour which converges to the maxi
mization of the reward function while exploring the
action space with the introduction of an entropy reg
ularization in the cost function. This algorithm is
well suited for problem with continuous action space.
DDPG algorithm [22], [23] and TD3 [24] are other al
gorithms that function with continuous action space,
but SAC uses interesting techniques, such as clipped
doubleQ learning that prevent overestimating the ac
tion value, and the entropy regularization, which is an
elegant method to adjust the balance between explo
ration and exploitation compared to the added Gaus
sian noise used in DDPG and TD3. The key equations
to understand SAC algorithm are now given, but the
implementation details, such as the experience replay,
the clipped doubleQ learning, and the target policy,
can be found in the original paper [17].

The action t̃θ, which corresponds to a normalized
tension cable between [−1, 1], is selected from a pol
icy πθ, which is a squashed Gaussian distribution,
namely:

t̃θ ∼ πθ = tanh (X ∼ N (µθ(s), σθ(s))) (9)

where µθ(s) and σθ(s), respectively the mean and the
standard deviation of the normal distribution N , are
the outputs of the actor neural network defined with
the parameter θ. Using normalized tension has a ten
dency to reduce the variance of the cable tension. The
conversion between normalized cable tension and ca
ble tension used in the environment is performed as
followed:

t = tmax
(̃
tθ + 1

)
, (10)

where tmax is the maximum cable tension allowed.
The modification of µθ(s) and σθ(s) aims at maxi
mizing the cost function Jπ and the standard update
rule using gradient ascent is given as:

θk+1 = θk + αlr∇θJπ (11)

where αlr is the learning rate, the indices k and k+1
correspond to the current and next values of the pa
rameters θ of the neural network, and∇θJπ is the gra
dient of the cost function Jπ to be maximized, namely
the rewards obtained at each time step of an episode
of length τ . The policy aims at maximizing the action
value Qπ(s, a), and the standard cost function Jπ of
a RL problem can be expressed as follows:

Jπ = E
τ∼π

[R(τ)|s, a] = Qπ(s, a), (12)

where E[.] means the expected value, the underscript
τ ∼ π means following the policy π during the

episode of length τ , (R(τ)|s, a) is the reward received
at the end of the episode of length τ after following
a sequence of state and action s, a. The novelty of
the SAC algorithm is the introduction of a bonus re
ward proportional to the entropy of the policy, which
has a tendency to increase the exploration and prevent
early convergence to a local optimum. The SAC cost
function is given as:

Jπ = Qπ(s, a)− α logπ (a|s) (13)
with α, a hyperparameter that adjust the level of en
tropy bonus. The term ”− logπ (a|s)”, including the
minus sign, corresponds to the entropy term, which is
a measure of the ”uncertainty” of the policy. A fully
deterministic policy has low entropy, whereas a ran
dom policy has high entropy. The policy is encour
aged to explore neighbouring actionstate thanks to
the entropy bonus. Usually, the term α is decreased
with as the learning step increases, since the policy
has learnt which actions lead the endeffector to the
target position.

The value function Qπ(s, a) of (13) is estimated
with two ”Critic” neural network, whose parameters
are updated by minimizing the mean square Bellman
error (MSBE). The MSBE is a measure of the neu
ral networks output to respect the Bellman equation,
which evaluates a stateaction value from its succes
sor, namely:

Qπ(s, a) = E[r(s, a) + γE[Qπ(s
′, a′)]], (14)

where γ is the discount factor, reflecting that short
term reward has more weight that longterm reward,
and s′, a′ are the successor state and action. The
use of two critic networks is the basis of the clipped
doubleQ that reduces the overestimation of the value
function by selecting the minimum output of the two
Qnetworks. After obtaining Jpi with interaction
with the environment, automatic differentiation tools
available with TensorFlow and PyTorch can calculate
one step for the gradient ascent. The SAC algorithm
used in this paper is based on the stablebaselines
GitHub repository [25], which is based on Tensor
Flow.

2.3 The reward function
The preceding subsection have described the environ
ment (forward dynamics) and the agent (SAC). The
reward obtained by the agent at each time step, is now
described.

For pickandplace trajectories, the reward func
tion can intuitively be expressed as the minimization
of the error ε between the position of the endeffector
p and the position of the desired position pd, namely:

r1 = −K1ε with ε =

√
(pd − p)T (pd − p),

(15)

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 168 Volume 15, 2020

with the negative sign to penalize the distance be
tween the desired state and the current state of the end
effector, and with a factor K1 to adjust the reward.
Another potential reward function uses the square er
ror instead of the error, namely:

r2 = −K2ε
2. (16)

The reward function based on r1 and r2 may penalize
the actor while exploring far from the desired posi
tion. Increasing the regulating factorK1 andK2 may
improve the behaviour close to the desired position,
but could result in an unstable behaviour of the agent
while far from the desired position.

Another solution would use an inverse function
to promote the agent to get closer to the target [26],
namely:

r3 =
K3

1 +K4ε
(17)

with K3 and K4 begin two parameters to adjust this
new reward function. Figure 3 shows the three pro
posed reward function, namely based on the error,
the square error, and the inverse of the error, named
r1, r2, and r3 respectively.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x (m)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

re
w

ar
d

r1 = !K1"
r2 = !K2"

2

r3 = K3

1+K4"

Figure 3: Reward function r1, r2, and r3. The reward
function r3 has been shifted down for visual compar
ison.

Reward shaping in pickandplace motion is
clearly defined with the position error ε. For more
abstract tasks, such as winning a game of table ten
nis, intermediate rewards may be designed to facili
tate the endgoal, but the agent may be stuck in a lo
cal optima and favor local shortterm reward instead
of longtermwinning return. This problem called ”re
ward shaping” can be assessed with sparse reward,
where the agent is given a reward only on completion
of the task, and with Hindsight Experience Replay
(HER) [27]–[29], where the agent still learns from an
episode, even if it ended with a goal different from
the desired objective. This promising concept will be
investigated in future research.

Parameter Value
Learning rate αlr 10−4

Total training step 200k
Episode length 4000
Batch size 256

Actor neural network [256, 256]
Environment time step ∆t 0.005 sec
Attachment point position a1 = [0,−0.3]T

a2 = [0, 0.3]T

Endeffector mass m = 0.5kg
Maximal cable tension tmax = 10N

Table 1: Parameter for the pickandplace task

2.4 Simulation parameters
For pickandplace trajectories, it is assumed that the
velocity and the acceleration of the endeffector at the
desired position is zero. Table 1 summarizes the main
parameters used to launch the simulation. The simu
lation runs on a CPU 2.3 GHz QuadCore i5. One
training session of 200k step takes approximately 1
hour. The initial position and the final position of the
endeffector are chosen randomly in the workspace
of the mechanism, below the attachment point a1 and
a2, between the range [0, 1] in the x direction and
[−0.3, 0.3] in the y direction. Notice that from fig
ure 1, the xdirection is vertical and directed down
ward.

3 Results
The aim of the simulation is to compare the effect
of different reward functions on the behavior of the
agent. There are three environments, corresponding
to the reward function r1, r2, and r3. The agent is
trained three times on each environment with differ
ent initial random seed, since the parameter initial
ization of the neural network has an influence on the
agent’s learning.

Figure 4 shows the average reward obtained dur
ing the learning phase of the agent. The average re
ward and the standard deviation of the three run are
shown as a solid line and shaded area respectively.
The convergence of the agent with the environment
using the reward function r1 takes about 150k, and the
environment with the reward r2 takes approximately
50k steps, if the drop in performance is ignored. But
then, during the training with these two environments,
the average reward drops drastically, which is due to
the exploration of the agent. The agent is deeply pe
nalized for exploring wrong action space. The agent
interacting with the environment that outputs the re
ward r3 has much less variance in terms of average
reward, but after the end of the training period, it ap
pears that additional training steps could lead to better
convergence.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 169 Volume 15, 2020

0 50 100 150 200
Step (x 1e3)

-20

-15

-10

-5

0

5

A
ve

ra
ge

 R
ew

ar
d

#104

r1 = !K1"

(a) Reward function r1

0 50 100 150 200
Step (x 1e3)

-8

-6

-4

-2

0

A
ve

ra
ge

 R
ew

ar
d

#105

r2 = !K2"
2

(b) Reward function r2

0 50 100 150 200
Step (x 1e3)

-1

0

1

2

3

4

A
ve

ra
ge

 R
ew

ar
d

#104

r3 = K3

1+K4"

(c) Reward function r3

Figure 4: Average reward during the training with 200k step.

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r1 = !K1"

(a) Reward function r1

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r2 = !K2"
2

(b) Reward function r2

0 200 400 600 800 1000
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 (

m
)

r3 = K3

1+K4"

(c) Reward function r3

Figure 5: Average error obtained with the trained model.

Figure 5 shows the average error obtained while
using the trained agent for the three environment.
During the first 200 steps, the error is high, which
is expected since the agent is still at the initial po
sition. Then the error converges toward zero for all
trained agents. The environment with the reward r2
has high variance and relatively poor convergence to
ward zero error. The environment with the reward r1
and r3 have better convergence and lower variance,
even though the reward function r1 has a slight edge
in terms of convergence speed.

4 Discussion
In the simulation shown in figure 4, the agent pulls
and releases the cables to position the endeffector
that would maximize the reward during an episode.
The standard strategy used in RL is to randomly try
different cable tension until converging to a satisfac
tory position close to the desired one, which is an in
efficient strategy that requires a lot of interaction be
tween the agent and the environment. The inverted
pendulum problem—one popular problem in the Ope
nAI gym (https://gym.openai.com/), with one
continuous action space and three observation space,
takes approximately 50k learning steps to converge to
an optimal solution. When the dynamics of the mech
anism is known, one way to improve the convergence
speed and to help the learning phase of the agent is
to use the inverse dynamics to calculate the required
cable tension from the desired position, which gives
a basis on the action to take for the agent instead of
randomly guessing which action would maximize the

cost function [30].
The number of learning step n depends on the step

time∆t used in the simulation of the environment and
the time duration of an episode τ , with the relationship
given as:

n =
τ

∆t
(18)

The number of step can be reduced when the dura
tion τ is reduced or if the step time ∆t is increased.
On a physical robot, it is often desired to have a fixed
episode length. Increasing the step time∆t may lead
into an unstable behaviour, especially using Euler’s
method to integrate the acceleration and to calculate
velocity and position. Figure 6 shows the compar
ison between Euler’s method and RK4 method for
100k training steps and ∆t = 0.01 sec, with the re
ward function r3, averaged on three runs with three
different seeds. It can be noticed that the average
reward obtained with RK4 is higher than with Eu
ler’s method: the reason is that Euler’s approxima
tion on the velocity and the position degrades as ∆t
gets larger. Moreover because the time step is rela
tively large, the position accuracy of the endeffector
is worsen, which prevent the agent to converge to the
desired position.

5 Conclusion
This paper presents an implementation of reinforce
ment learning for positioning a twoDOFs CSPR for
pointtopoint trajectories. The derivation of the dy
namics of the mechanical system has been derived

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 170 Volume 15, 2020

https://gym.openai.com/

0 20 40 60 80 100
Step (x 1e3)

0

0.5

1

1.5

2

A
ve

ra
ge

 R
ew

ar
d

#104

Euler method
RK4 method

Figure 6: Comparison between Euler method and
RK4.

and the reinforcement learning algorithm, namely
Soft ActorCritic, has been described. The result
shows a comparison between different reward func
tion provided by the environment and indicates that
reward shaping has an influence on the behaviour
of the trained agent. A comparison between Euler
method and RK4 has been presented and highlight
benefits of using more precise in terms of learning
steps. Future research will focus on the integration
of such RL technique on physical CSPR and compar
ison with classical control theory.

References:
[1] C. Gosselin and S. Foucault, “Dynamic point

topoint trajectory planning of a twodof cable
suspended parallel robot,” IEEE Transactions
on Robotics, vol. 30, no. 3, pp. 728–736, 2014.

[2] C. Gosselin, P. Ren, and S. Foucault, “Dy
namic trajectory planning of a twodof cable
suspended parallel robot,” in 2012 IEEE Inter
national conference on Robotics and Automa
tion, IEEE, 2012, pp. 1476–1481.

[3] R. Bostelman, J. Albus, N. Dagalakis, A. Ja
coff, and J. Gross, “Applications of the nist
robocrane,” in Proceedings of the 5th Interna
tional Symposium on Robotics and Manufac
turing, vol. 5, 1994.

[4] P. D. Campbell, P. L. Swaim, and C. J. Thomp
son, “Charlotte™ robot technology for space
and terrestrial applications,” SAE transactions,
pp. 641–648, 1995.

[5] H. R. Fahham, M. Farid, and M. Khooran,
“Time optimal trajectory tracking of redun
dant planar cablesuspended robots consid
ering both tension and velocity constraints,”
Journal of dynamic systems, measurement, and
control, vol. 133, no. 1, 2011.

[6] B. Zi, X. Wu, J. Lin, and Z. Zhu, “Inverse
kinematics and singularity analysis for a 3dof
hybriddriven cablesuspended parallel robot,”
International journal of advanced robotic sys
tems, vol. 9, no. 4, p. 133, 2012.

[7] J.T. Liu, F.Y. Wu, W.J. Lu, and B.L. Zhang,
“Domain adaption for facial expression recog
nition,” in 2019 International Conference on
Machine Learning and Cybernetics (ICMLC),
IEEE, 2019, pp. 1–6.

[8] J. D. Deng, “Online outlier detection of en
ergy data streams using incremental and kernel
pca algorithms,” in 2016 IEEE 16th Interna
tional Conference on Data Mining Workshops
(ICDMW), IEEE, 2016, pp. 390–397.

[9] F. Djavanroodi, “Artificial neural network
modeling of surface roughness in magnetic
abrasive finishing process,” Applied Sciences,
Engineering and Technology, vol. 6, no. 11,
pp. 1976–1983, 2013.

[10] G. Latif, J. Alghazo, L. Alzubaidi, M. M.
Naseer, and Y. Alghazo, “Deep convolutional
neural network for recognition of unifiedmulti
language handwritten numerals,” in 2018 IEEE
2nd International Workshop on Arabic and De
rived Script Analysis and Recognition (ASAR),
IEEE, 2018, pp. 90–95.

[11] A. S. Polydoros and L. Nalpantidis, “Survey
of modelbased reinforcement learning: Appli
cations on robotics,” Journal of Intelligent &
Robotic Systems, vol. 86, no. 2, pp. 153–173,
2017.

[12] T. Ma, H. Xiong, L. Zhang, and X. Diao,
“Control of a cabledriven parallel robot via
deep reinforcement learning,” in 2019 IEEE In
ternational Conference on Advanced Robotics
and its Social Impacts (ARSO), IEEE, 2019,
pp. 275–280.

[13] H. Xiong, T. Ma, L. Zhang, and X. Diao,
“Comparison of endtoend and hybrid deep re
inforcement learning strategies for controlling
cabledriven parallel robots,”Neurocomputing,
vol. 377, pp. 73–84, 2020.

[14] A. ElFakdi and M. Carreras, “Policy gra
dient based reinforcement learning for real
autonomous underwater cable tracking,” in
2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2008,
pp. 3635–3640.

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 171 Volume 15, 2020

[15] Q. Wu, Y. Gu, Y. Li, B. Zhang, S. A. Chep
inskiy, J. Wang, A. A. Zhilenkov, A. Y. Kras
nov, and S. Chernyi, “Position control of cable
driven robotic soft arm based on deep re
inforcement learning,” Information, vol. 11,
no. 6, p. 310, 2020.

[16] B. Doroodgar and G. Nejat, “A hierarchical
reinforcement learning based control architec
ture for semiautonomous rescue robots in clut
tered environments,” in 2010 IEEE Interna
tional Conference on Automation Science and
Engineering, IEEE, 2010, pp. 948–953.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S.
Levine, “Soft actorcritic: Offpolicy maxi
mum entropy deep reinforcement learning with
a stochastic actor,” J. Dy and A. Krause, Eds.,
ser. Proceedings of Machine Learning Re
search, vol. 80, Stockholmsmässan, Stockholm
Sweden: PMLR, Oct. 2018, pp. 1861–1870.

[18] X. Jiang and C. Gosselin, “Dynamic pointto
point trajectory planning of a threedof cable
suspended parallel robot,” IEEE Transactions
on Robotics, vol. 32, no. 6, pp. 1550–1557,
2016.

[19] X. Jiang, E. Barnett, and C. Gosselin, “Pe
riodic trajectory planning beyond the static
workspace for 6dof cablesuspended paral
lel robots,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1128–1140, 2018.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller, Playing atari with deep reinforce
ment learning, 2013.

[21] T. Haarnoja, A. Zhou, K. Hartikainen, G.
Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A.
Gupta, P. Abbeel, and S. Levine, Soft actor
critic algorithms and applications, 2018.

[22] D. Silver, G. Lever, N. Heess, T. Degris, D.
Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” 2014.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wier
stra, Continuous control with deep reinforce
ment learning, 2015.

[24] S. Fujimoto, H. van Hoof, and D. Meger, Ad
dressing function approximation error in actor
critic methods, 2018.

[25] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A.
Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Rad
ford, J. Schulman, S. Sidor, and Y. Wu, Sta
ble baselines, https://github.com/hill-
a/stable-baselines, 2018.

[26] L. Butyrev, T. Edelhäußer, and C. Mutschler,
Deep reinforcement learning for motion plan
ning of mobile robots, 2019.

[27] M. Andrychowicz, F. Wolski, A. Ray, J.
Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, P. Abbeel, and W. Zaremba, Hind
sight experience replay, 2017.

[28] M. Plappert, M. Andrychowicz, A. Ray, B.Mc
Grew, B. Baker, G. Powell, J. Schneider, J. To
bin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, Multigoal reinforcement learn
ing: Challenging robotics environments and re
quest for research, 2018.

[29] M. Kim, D.K. Han, J. Park, and J.S. Kim,
“Motion planning of robot manipulators for a
smoother path using a twin delayed deep deter
ministic policy gradient with hindsight experi
ence replay,” Applied Sciences, vol. 10, p. 575,
2020.

[30] J. K. Gupta, K. Menda, Z. Manchester, and
M. J. Kochenderfer, “A general framework for
structured learning of mechanical systems,”

Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Dinhson Vu conducted the research and investiga
tion process. He also carried out the simulation of this
work. Ahmad Alsmadi did the preparation, creation
and presentation of the published work.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
DOI: 10.37394/232011.2020.15.19 Dinh-Son Vu, Ahmad Alsmadi

E-ISSN: 2224-3429 172 Volume 15, 2020

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Materials and Methods
	Dynamics of the CSPR
	Soft Actor-Critic Algorithm
	The reward function
	Simulation parameters

	Results
	Discussion
	Conclusion

